חAmIBIA UTIVERSITY OF SCIEПCE AחD TECHПOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF AGRICULTURE AND NATURAL RESOURCE SCIENCES DEPARTMENT OF AGRICULTURAL SCIENCES AND AGRIBUSINESS

QUALIFICATION: $\operatorname{BACHELOR}$ OF SCIENCE IN AGRICULTURE			
QUALIFICATION CODE:	O7BAGA	LEVEL:	7
COURSE CODE:	MTA611S	COURSE NAME:	Mathematics for Agribusiness
SESSION:	June 2023	PAPER:	Theory
DURATION:	3 Hours	MARKS:	100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Mr. Mwala Lubinda
MODERATOR(S)	Mr. Teofilus Shiimi

INSTRUCTIONS

1. ANSWER ALL questions.
2. Write clearly and neatly.
3. Number the answers clearly \& correctly.

PERMISSIBLE MATERIALS

1. All written work MUST be done in blue or black ink.
2. Calculators allowed.
3. The LAST PAGE has FORMULA.
4. No books, notes and other additional aids are allowed.

THIS QUESTION PAPER CONSISTS OF 6 PAGES (including this front page).
a. Consider a function, $f(x)=x^{2}-4 x-5$. Find the range when the domain is one and the domain when the range is zero.
b. Use interval notation to express the domain of the function:

$$
\begin{equation*}
g(x)=\frac{2 x-1}{x^{2}-9} \tag{4}
\end{equation*}
$$

c. Suppose you know that an agribusiness's production can be approximated using a univariate quadratic function with a maxima and roots at $x=-10$ and $x=20$. Based on this information answer the following questions below.
i. Derive the algebraic equation for the production function.
ii. Compute the production function's y-intercept.
iii. Compute the range and domain value at the maximum point.
iv. Sketch a well labelled graph to represent the production function. On your graph show the roots, y-intercept, and maxima.
d. A vendor's total monthly revenue is from the sale of x bags potatoes is represented by a function:

$$
r=150 x
$$

Furthermore, the vendor's total month costs are given by $c=100 x+3500$. Compute, how many bags of potatoes must the vendor sale to break even? (Hint: break even means revenue is equal to cost).
a. Use the Newton's Difference Quotient (or first principle of differentiation) to find the first derivative of the function:

$$
\begin{equation*}
g(x)=x^{2}-4 x-5 \tag{6}
\end{equation*}
$$

To obtain full marks, show all the critical steps in your answer.
b. Find:
i. $\quad \lim _{x \rightarrow 0} \frac{(2+x)^{2}-4}{x}$
ii. $\quad \lim _{k \rightarrow 6} \frac{\sqrt{k-2}-2}{k-6}$
c. Find the equation of a straight-line that is tangent to the curve:

$$
\begin{equation*}
y=\ln \left(x^{2}-2 x+24\right) \tag{9}
\end{equation*}
$$

at $x=0$.
a. Consider the functions, $f(x)=\left(3 x^{4}-5\right)^{6}$ and $g(x)=\log _{8} x^{4}$. Find:
i. $f^{\prime}(x)$
ii. $\quad g^{\prime}(x)$
b. Find z_{x}, z_{y} and $z_{y x}$, given the function:

$$
\begin{equation*}
z=3 e^{2 x} y^{2} \tag{6}
\end{equation*}
$$

c. Find the critical points of the function below and test whether it is at a relative maximum, relative minimum, inflection point, or saddle point. Show all your calculations.

$$
z=3 x^{3}-5 y^{2}-225 x+70 y+23
$$

a. Find:
i. $\quad \int_{0}^{1}\left(3 x^{2}-x-2\right) d x$
ii. $\int x^{2}\left(x^{3}+2\right) d x$
b. Suppose an agribusiness's marginal cost function of wheat production is represented by:

$$
\begin{equation*}
M C=\frac{d c}{d q}=250+30 q+9 q^{2} \tag{7}
\end{equation*}
$$

where $M C$ is the marginal cost, c is the total cost, and q is the units of output. Find the cost of producing 10 units of output assuming a fixed cost of $\mathbf{N} \$ 10,000$.
c. To produce 70 tonnes of wheat, an agribusiness wishes to distribute production between its two farms, farm 1 and farm 2. The total cost of wheat production, c, is given by the function:

$$
\begin{equation*}
c=4 q_{1}^{2}+2 q_{1} q_{2}+5 q_{2}^{2}+1000 \tag{10}
\end{equation*}
$$

where q_{1} and q_{2} are tonnes of wheat produced at farm 1 and farm 2, respectively. How should the agribusiness distributed to production between the two farms to minimize costs? Furthermore, compute and interpret lambda (λ).

TOTAL MARKS

THE END

FORMULA

```
Basic Derivative Rules
    Constant Rule. \(\frac{d}{d x}(c)-0\)
    Constant Multiple Rule \(\frac{d}{d x}\left[c f(x) \mid-c f^{\prime}(x)\right.\)
    Power Rule: \(\frac{d}{d x}\left(x^{8}\right)-n x^{0-1}\)
    Sum Rule: \(\frac{d}{\dot{\alpha} x}[f(x)+g(x)]-f(x)+g^{\prime}(x)\)
    Difference Rule \(\frac{d}{d x}\left[f(x)-g(x) \mid-f(x)-\varepsilon^{\prime}(x)\right.\)
    Product Rule \(\frac{d}{d x}\left[f(x) g(x) \mid-f(x) g^{\prime}(x)-g(x) f(x)\right.\)
    Querient Rule \(\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]-\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}\)
    Chain Rule \(\frac{d}{\dot{d x}} f(g(x))-f(g(x)) g(x)\)
```


Basic Integration Rules

1. $\int a d x=a x+C$
2. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1$
3. $\int \frac{1}{x} d x=\ln |x|+C$
4. $\int e^{x} d x=e^{x}+C$
5. $\int a^{x} d x=\frac{a^{x}}{\ln a}+C$
6. $\int \ln x d x=x \ln x-x+C$

Integration by Substitution
The following are the 5 steps for using the integration by substitution metthod:

- \quad Step 1: Choose a new variable u
- \quad Step 2: Determine the value $d x$
- Step 3: Make the substitution
- Step 4: Integrate resulting integral
- \quad Step 5: Return to the initial variable \boldsymbol{x}

Unconstrained optimization: Multivariate functions
The following are the steps for finding a solution to an unconstrained optimization problem:

Condition	Minimum	Maximum
FOCs or necessary conditions SOCs or sufficient conditions	$f_{1}=f_{2}=0$	$f_{1}=f_{2}=0$
	$f_{11}>0, f_{22}>0$, and	$f_{11}<0, f_{22}<0$ and
	$f_{11}: f_{22}>\left(f_{12}\right)^{2}$	$f_{11}: f_{22}>\left(f_{12}\right)^{2}$
	Inflection point	
	$\begin{aligned} & f_{11}<0 . f_{22}<0, \text { and } f_{11} \cdot f_{22}<\left(f_{12}\right)^{2} \text { or } \\ & f_{11}<0 . f_{22}<0 \text {, and } f_{11} \cdot f_{22}<\left(f_{12}\right)^{2} \end{aligned}$	
	Saddle point	
	$f_{11}>0, f_{22}<0$, and $f_{11}: f_{22}<\left(f_{12}\right)^{2}$. or $f_{11}<0, f_{22}>0$, and $f_{11}, f_{21}<\left(f_{12}\right)^{2}$	
	Ineonclusive	
	$f_{11} \cdot f_{22}=\left(f_{12}\right)^{2}$	

Derivative Rules for Exponential Functions
$\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$
$\frac{d}{d x}\left(e^{s(x)}\right)=e^{s(x)} g^{\prime}(x)$
$\frac{d}{d x}\left(a^{z(x)}\right)=\ln (\mathrm{a}) \mathrm{a}^{z(x)} g^{\prime}(x)$
Derivative Rules for Logarithmic Functions
$\frac{d}{d x}(\ln x)=\frac{1}{x}, x>0$
$\frac{d}{d x} \ln (g(x))=\frac{g^{\prime}(x)}{g(x)}$
$\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}, x>0$
$\frac{d}{d x}\left(\log _{a} g(x)\right)=\frac{g^{\prime}(x)}{g(x) \ln a}$

Integration by Parts

The formula for the method of integration by parts is:

$$
\int u d v=u \cdot v-\int v d u
$$

There are three steps how to use this formula:

- Step 1: identify u and $d v$
- Step 2: compute u and $d u$
- Step 3: Use the integration by parts formula

Unconstrained optimization: Univariate functions The following are the steps for finding a solution to an unconstrained optimization problem:

- Step 1: Find the critical value(s), such that:

$$
f^{\prime}(a)=0
$$

- Step 2: Evaluate for relative maxima or minima
$\begin{array}{ll}\circ & \text { If } f^{\prime \prime}(a)>0 \rightarrow \text { minima } \\ \circ & \text { If } f^{\prime \prime}(a)>0 \rightarrow \text { maxima }\end{array}$

Constrained Optimization

The following are the steps for finding a solution to a constrained optimization problem using the Langrage technique:

- Step 1: Set up the Langrage equation
- Step 2: Derive the First Order Equations
- Step 3: Solve the First Order Equations
- Step 4: Estimate the Langrage Multiplier

